Publications

Publications Search

Search for publications by author
Search for publications by abstract keyword(s)

Heterozygous neuregulin 1 mice display greater baseline and Delta(9)-tetrahydrocannabinol-induced c-Fos expression

Abstract

Cannabis use may increase the risk of developing schizophrenia by precipitating the disorder in genetically vulnerable individuals. Neuregulin 1 (NRG1) is a schizophrenia susceptibility gene and mutant mice heterozygous for the transmembrane domain of this gene (Nrg1 HET mice) exhibit a schizophrenia-related phenotype. We have recently shown that Nrg1 HET mice are more sensitive to the behavioral effects of the main psychoactive constituent of cannabis, Delta(9)-tetrahydrocannabinol (THC). In the present study, we examined the effects of THC (10 mg/kg i.p.) on neuronal activity in Nrg1 HET mice and wild type-like (WT) mice using c-Fos immunohistochemistry. In the lateral septum, THC selectively increased c-Fos expression in Nrg1 HET mice with no corresponding effect being observed in WT mice. In addition, THC promoted a greater increase in c-Fos expression in Nrg1 HET mice than WT mice in the central nucleus of the amygdala, the bed nucleus of the stria terminalis and the paraventricular nucleus of the hypothalamus. Consistent with Nrg1 HET mice exhibiting a schizophrenia-related phenotype, these mice expressed greater drug-free levels of c-Fos in two regions thought to be involved in schizophrenia, the shell of the nucleus accumbens and the lateral septum. Interestingly, the effects of genotype on c-Fos expression, drug-free or following THC exposure, were only observed when animals experienced behavioral testing prior to perfusion. This suggests an interaction with stress was necessary for the promotion of these effects. These data provide neurobiological correlates for the enhanced behavioral sensitivity of Nrg1 HET mice to THC and reinforce the existence of cannabinoid-neuregulin 1 interactions in the CNS. This research may enhance our understanding of how genetic factors increase individual vulnerability to schizophrenia and cannabis-induced psychosis.

Type Journal
ISBN 0306-4522 (Print)
Authors Boucher, A. A.;Hunt, G. E.;Karl, T.;Micheau, J.;McGregor, I. S.;Arnold, J. C. :
Publisher Name NEUROSCIENCE
Published Date 2007-01-01
Published Volume 149
Published Issue 4
Published Pages 861-870
Status Published in-print
URL link to publisher's version http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17905522
OpenAccess link to author's accepted manuscript version https://publications.gimr.garvan.org.au/open-access/2168