Publications

Publications Search

Search for publications by author
Search for publications by abstract keyword(s)

Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit

Abstract

Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit.

Type Journal
ISBN 1521-1878 (Electronic) 0265-9247 (Linking)
Authors Rogers, S.; McCloy, R.; Watkins, D. N.; Burgess, A.;
Publisher Name BIOESSAYS
Published Date 2016-07-01
Published Volume 38 Suppl 1
Published Pages S24-32
Status Published in-print
URL link to publisher's version http://www.ncbi.nlm.nih.gov/pubmed/27417119
OpenAccess link to author's accepted manuscript version https://publications.gimr.garvan.org.au/open-access/13687