Publications

Publications Search

Search for publications by author
Search for publications by abstract keyword(s)

Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies

Abstract

Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favourable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains, and the selection of binders against a diverse set of antigens. Unlike ""camelized"" human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg-white lysozyme revealed an extended VH binding interface, with complementarity determining region 3 (CDR3) deeply penetrating into the active site cleft, highly reminiscent to what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well-expressed, but also rival the cleft binding properties of camelid antibodies.

Type Journal
Authors Rouet R.; Dudgeon K.; Christie M.; Langley D.; Christ D.
Publisher Name JOURNAL OF BIOLOGICAL CHEMISTRY
Published Date 2015-05-08
Published Volume 290
Published Issue 19
Published Pages 11905-17
Status Published in-print
URL link to publisher's version http://www.ncbi.nlm.nih.gov/pubmed/25737448
OpenAccess link to author's accepted manuscript version https://publications.gimr.garvan.org.au/open-access/12770