Publications
PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle
Abstract
Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)(-/-) mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5 (-/-) mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5 (-/-) mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action.
Type | Journal |
---|---|
ISBN | 2212-8778 (Electronic) 2212-8778 (Linking) |
Authors | Mason, R. R. ; Mokhtar, R. ; Matzaris, M. ; Selathurai, A. ; Kowalski, G. M. ; Mokbel, N. ; Meikle, P. J. ; Bruce, C. R. ; Watt, M. J.; |
Publisher Name | Molecular Metabolism |
Published Date | 2014-01-01 |
Published Volume | 3 |
Published Issue | 6 |
Published Pages | 652-63 |
Status | Published in-print |
URL link to publisher's version | http://www.ncbi.nlm.nih.gov/pubmed/25161888 |
OpenAccess link to author's accepted manuscript version | https://publications.gimr.garvan.org.au/open-access/12597 |