Publications

Publications Search

Search for publications by author
Search for publications by abstract keyword(s)

Reduced glucocerebrosidase is associated with increased a-synuclein in sporadic Parkinson’s disease

Abstract

Heterozygous mutations in GBA1, the gene encoding lysosomal glucocerebrosidase, are the most frequent known genetic risk factor for Parkinson’s disease. Reduced glucocerebrosidase and a-synuclein accumulation are directly related in cell models of Parkinson’s disease. We investigated relationships between Parkinson’s disease-specific glucocerebrosidase deficits, glucocerebrosidase-related pathways, and a-synuclein levels in brain tissue from subjects with sporadic Parkinson’s disease without GBA1 mutations. Brain regions with and without a Parkinson’s disease-related increase in a-synuclein levels were assessed in autopsy samples from subjects with sporadic Parkinson’s disease (n = 19) and age- and post-mortem delay-matched controls (n = 10). Levels of glucocerebrosidase, a-synuclein and related lysosomal and autophagic proteins were assessed by western blotting. Glucocerebrosidase enzyme activity was measured using a fluorimetric assay, and glucocerebrosidase and a-synuclein messenger RNA expression determined by quantitative polymerase chain reaction. Related sphingolipids were analysed by mass spectrometry. Multivariate statistical analyses were performed to identify differences between disease groups and regions, with non-parametric correlations used to identify relationships between variables. Glucocerebrosidase protein levels and enzyme activity were selectively reduced in the early stages of Parkinson’s disease in regions with increased a-synuclein levels although limited inclusion formation, whereas GBA1 messenger RNA expression was non-selectively reduced in Parkinson’s disease. The selective loss of lysosomal glucocerebrosidase was directly related to reduced lysosomal chaperone-mediated autophagy, increased a-synuclein and decreased ceramide. Glucocerebrosidase deficits in sporadic Parkinson’s disease are related to the abnormal accumulation of a-synuclein and are associated with substantial alterations in lysosomal chaperone-mediated autophagy pathways and lipid metabolism. Our data suggest that the early selective Parkinson’s disease changes are likely a result of the redistribution of cellular membrane proteins leading to a chronic reduction in lysosome function in brain regions vulnerable to Parkinson’s disease pathology.

Type Journal
Authors Murphy, K.E.; Gysbers, A.M.; Abbott, S.K.; Tayebi, N.; Woojin, S.K.; Sidransky, E.; Cooper, A.; Garner, B.; Halliday, G.
Publisher Name BRAIN
Published Date 2014-12-01
Published Volume 137
Published Pages 834-48
Status Published in-print
URL link to publisher's version http://www.ncbi.nlm.nih.gov/pubmed/24477431
OpenAccess link to author's accepted manuscript version https://publications.gimr.garvan.org.au/open-access/12521