Publications
Novel cancer drivers: mining the kinome
Abstract
Large-scale cancer genome studies are unveiling significant complexity and heterogeneity even in histopathologically indistinguishable cancers. Differentiating 'driver' mutations that are functionally relevant from 'passenger' mutations is a major challenge in cancer genomics. While recurrent mutations in a gene provides supporting evidence of 'driver' status, novel computational methods and model systems are greatly improving our ability to identify genes important in carcinogenesis. Reimand and Bader have recently shown that driver gene discovery in discrete gene classes (in this case the kinome) is possible across multiple cancer types and has the potential to yield new druggable targets and clinically relevant leads.
Type | Journal |
---|---|
ISBN | 1756-994X (Print) |
Authors | Biankin, A. V. ; Grimmond, S. M.; |
Responsible Garvan Author | (missing name) |
Publisher Name | Genome Medicine |
Published Date | 2013-03-01 |
Published Volume | 5 |
Published Issue | 2 |
Published Pages | 19 |
Status | Published in-print |
URL link to publisher's version | http://www.ncbi.nlm.nih.gov/pubmed/23445765 |
OpenAccess link to author's accepted manuscript version | https://publications.gimr.garvan.org.au/open-access/11991 |