Publications
Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site Study
Abstract
Background: Prostate cancer (PCa) influences its surrounding habitat, which tends to manifest as different phenotypic appearances on magnetic resonance imaging (MRI). This region surrounding the PCa lesion, or the peri-tumoral region, may encode useful information that can complement intra-tumoral information to enable better risk stratification. Purpose: To evaluate the role of peri-tumoral radiomic features on bi-parametric MRI (T2-weighted and Diffusion-weighted) to distinguish PCa risk categories as defined by D'Amico Risk Classification System. Materials and Methods: We studied a retrospective, HIPAA-compliant, 4-institution cohort of 231 PCa patients (n = 301 lesions) who underwent 3T multi-parametric MRI prior to biopsy. PCa regions of interest (ROIs) were delineated on MRI by experienced radiologists following which peri-tumoral ROIs were defined. Radiomic features were extracted within the intra- and peri-tumoral ROIs. Radiomic features differentiating low-risk from: (1) high-risk (L-vs.-H), and (2) (intermediate- and high-risk (L-vs.-I + H)) lesions were identified. Using a multi-institutional training cohort of 151 lesions (D1, N = 116 patients), machine learning classifiers were trained using peri- and intra-tumoral features individually and in combination. The remaining 150 lesions (D2, N = 115 patients) were used for independent hold-out validation and were evaluated using Receiver Operating Characteristic (ROC) analysis and compared with PI-RADS v2 scores. Results: Validation on D2 using peri-tumoral radiomics alone resulted in areas under the ROC curve (AUCs) of 0.84 and 0.73 for the L-vs.-H and L-vs.-I + H classifications, respectively. The best combination of intra- and peri-tumoral features resulted in AUCs of 0.87 and 0.75 for the L-vs.-H and L-vs.-I + H classifications, respectively. This combination improved the risk stratification results by 3-6% compared to intra-tumoral features alone. Our radiomics-based model resulted in a 53% accuracy in differentiating L-vs.-H compared to PI-RADS v2 (48%), on the validation set. Conclusion: Our findings suggest that peri-tumoral radiomic features derived from prostate bi-parametric MRI add independent predictive value to intra-tumoral radiomic features for PCa risk assessment.
Type | Journal |
---|---|
ISBN | 2072-6694 (Print) 2072-6694 (Linking) |
Authors | Algohary, A.; Shiradkar, R.; Pahwa, S.; Purysko, A.; Verma, S.; Moses, D.; Shnier, R.; Haynes, A. M.; Delprado, W.; Thompson, J.; Tirumani, S.; Mahran, A.; Rastinehad, A. R.; Ponsky, L.; Stricker, P. D.; Madabhushi, A. |
Responsible Garvan Author | Anne-Maree Haynes |
Publisher Name | Cancers |
Published Date | 2020-08-31 |
Published Volume | 12 |
Published Issue | 8 |
Status | Published in-print |
DOI | 10.3390/cancers12082200 |
URL link to publisher's version | https://www.ncbi.nlm.nih.gov/pubmed/32781640 |
OpenAccess link to author's accepted manuscript version | https://publications.gimr.garvan.org.au/open-access/15575 |