Publications
Tumor cell dormancy and reactivation in bone: skeletal biology and therapeutic opportunities
Abstract
In the advanced stages of many cancers, tumor cells disseminate from the primary site and colonize distant locations such as the skeleton. These disseminated tumor cells colonizing bone can evade treatments and survive for prolonged periods in a dormant state before becoming reactivated to form overt metastases. The precise interactions between tumor cells and the bone microenvironment that promote survival, dormancy, and reactivation are currently unknown; as a result, bone metastases remain incurable. In this review we discuss the unique cellular and microenvironmental features of endosteal bone that tumor cells engage with to persist and survive, and ultimately reactivate and proliferate. Specifically, we provide a detailed summary of current perspectives on the processes of tumor cell colonization of the skeleton, and the endosteal bone cells as critical controllers of the dormant cancer cell phenotype, as well as relevant microenvironmental effects such as hypoxia. Evidence for the role of the osteoclast in controlling dormant cancer cell reactivation in bone is highlighted, preceding a discussion of therapeutics targeting the bone microenvironment, including anti‐RANK ligand and bisphosphonate therapies and their potential utility in preventing tumor cell reactivation in addition to protecting bone from tumor‐induced destruction.
Type | Journal |
---|---|
Authors | Byrne, N.M., Summers, M.A. and McDonald, M.M. |
Responsible Garvan Author | Dr Michelle McDonald |
Publisher Name | JOURNAL OF BONE AND MINERAL RESEARCH PLUS |
Published Date | 2019-03-01 |
Published Volume | 3 |
Published Issue | 3 |
Published Pages | e10125 |
Status | Published in-print |
DOI | 10.1002/jbm4.10125 |
URL link to publisher's version | https://onlinelibrary.wiley.com/doi/10.1002/jbm4.10125 |
OpenAccess link to author's accepted manuscript version | https://publications.gimr.garvan.org.au/open-access/14888 |